True colors?

Some time ago, I wrote a piece on this blog about peace activists during the Vietnam war.  The gist of it was that whether or not to go into the military was a difficult decision back then, and that motivations varied from person to person regarding that decision.  Many activists were sincere in their opposition to the war, but many more were simply saving themselves, and got into the anti-war effort as a justification.  My own decision to join was similarly motivated by personal considerations.  I was not a believer in the cause either way, really; my parents had fled the Soviet Union and were no fans of communism, and I couldn’t bring myself to break their hearts.

Anyway, a friend of long standing took exception to something I said in the comments in response to a reader’s comment, expressing disappointment that I would say such a thing; what it was is not relevant to this post.  What is relevant is that our relationship has changed since then.  It got me to thinking about our default thinking about our fellow humans, perhaps even ourselves.

We seem to begin with the assumption that people are intrinsically bad, and while we’re willing to give people the benefit of the doubt, we accept the first bit of evidence, even the flimsiest at times, of their inherent wickedness.  Once done, there’s no going back.

It’s easy enough to see this as a reflection of the teachings of the dominant religions in the world; we are wicked, unworthy, and can only be saved by supernatural intervention.  If left to our own devices, we are condemned to eternal, horrifying anguish, and, what’s more, we deserve it.

It might be more insightful to turn this explanation around.  Religions are the reflections (and amplifications) of our natural tendencies.

Why on earth would that be a feature of our nature?  I think the evolution of our social co-dependency goes a long way toward explaining it, and the key to understanding it is that, conversely, we tend to resist thinking ill of our closest friends and relatives, no matter how much evidence there is for it.  The result is the coalescing of the core social group, while pushing outward those at the periphery.  In short, it’s not wise to trust someone you don’t know very well, and who might have an allegiance to another group.  Historically, or rather, prehistorically, I suppose, our welfare was intimately tied to the welfare of our core group.  When agriculture developed and spawned urban civilization, groups became much larger and intertwined in a complex way; it’s no accident that religion as we know it developed precisely then.  Originally, there was no distinction between religion and ideology, it all served the same purpose: as the glue that bound together these larger, more complex social groups.  It’s not surprising that the precepts and values under this new situation would be the same as those we had for the 2 or 3 million years of our existence as hunters and gatherers.  They represent the sow’s ear from which we fashioned our silk purses.

Have we outgrown the utility of such conventions?  No doubt, but there seems little we can do about it beyond just being aware of it.  Evolution is a matter of more generations than we’ve had to deal with all the changes we’ve wrought upon ourselves.

How to be a proper fool

But the fool on the hill
Sees the sun going down
And the eyes in his head
See the world spinning round

To be the best, most complete fool you can be, follow these steps faithfully, in the proper order

  1. Read voraciously, everything you can get your hands on, sacred or profane, it doesn’t matter, just be a sponge.
  2. Apply your best critical thinking skills to separate the wheat from the chaff.
  3. Seek out the most knowledgeable people in every field, make their acquaintance, and don’t be shy about disagreeing with them.
  4. Examine the world’s religions, from the simplest animism to the most convoluted monotheism.  Talk to both believers and infidels, converts and apostates.
  5. Travel as extensively as possible, “trying on” various cultures, sorting through the good and the bad aspects of each.
  6. Avoid making pronouncements about your conclusions, realizing your remarks will be misinterpreted at best, and turned to evil ends at worst.
  7. Having done all of that, isolate yourself from others, to avoid contamination of your insights.
  8. Practice deep meditation and introspection.
  9. Realize that after a lifetime of learning and accumulating wisdom, you have shared all of this with no one, from a false modesty arising from a deep-seated fear of being wrong.
  10. Die.

 

Occam’s bludgeon

I’ve been reading a lot lately on the nature of time and space from the perspective of physics, and I cannot help thinking of the drunk looking for his car keys under a streetlamp. Asked by a passerby where he last saw them, he replies, “In that dark alley.”

“Really?” asks the bystander. “Then why are you looking here?”

“Because the light’s better!”

To a physicist, mathematics is the light. It is the hammer for which all problems resemble a nail. It is the hail and farewell of a journey not taken.

Don’t get me wrong, I am fully aware and appreciative of the power of mathematics.  Without it, I couldn’t be “writing” this post — tapping on plastic bumps, confident that not only will the resultant deviations of light on an entirely separate slab in front of me configure themselves to reflect my thoughts, but also send mysterious invisible waves into the night so that you can see those same squiggles on your slab.  But the formulas that describe these processes are not identical to the processes themselves, as phenomena in the real world.  They are models, or

… task-driven, purposeful simplification[s] and abstraction[s] of a perception of reality … [emphasis mine]

In other words, take out all the messy, inconvenient bits and see if you can’t come up with something useful.  There have been powerful models of reality throughout history that have enabled marvelous results, and that we have since decided are inaccurate.  I need only mention shamanism and acupuncture.  And even physicists, despite all their rhapsodizing about mathematics, still can’t make all their theories play well with each other without imaginative gymnastics.

Mathematical models are by far the most universal and fruitful of these, but are they real, in the sense that the universe works that way a priori?  Not according to Raymond Tallis:

The mathematics of light does not get anywhere near the experience of yellow, nor does the mathematical description of patterns of nerve impulses reach pain itself. This is sometimes seen as evidence that neither the colour nor the pain are really real – although it might be difficult to sell this claim to the man looking at a daffodil or a woman with toothache.

I have no quibble with the idea that models, mathematical or otherwise, are indispensable for our understanding of the real world, but physicists have been insisting that they are the real world.  They cite Occam’s Razor, the axiom that the simplest explanation is always not only the most likely to be true, but is actually true.

Ironically, William of Occam, the late medieval monk for whom this principle is named, did not believe in the existence of universal laws of nature.  Humans, he thought, had made them all up for convenience.

Go figure.

 

Snow

Snow.  That’s what we called it, snow.  No polar vortex, no bomb cyclone, no Winter Storm Fred or anything like that.  Snow.  If it got so thick you couldn’t see past your outstretched hand, it was a blizzard; that was about the extent of our parsing of winter weather.

But wait, you say, people are suffering losses, some are even dying.  That’s true, and it’s just as lamentable now as it was before the storm of jargon came spewing out of weather centers.  I daresay the casualties were worse back then, in the mid 20th century, before forced air gas heating, heat pumps, whole house generators and hyper-insulated houses.  There were only two realistic choices: coal or oil, and both systems worked on the principle of convection.  Worse, if a winter turned out to be especially long or cold, you could run out of either, and be hard put to get more of it in a reasonable time.  People froze.  It was winter.

But for every downside there’s an upside.  The snow was a cash cow for us kids.  We’d go trundling up and down the street shoveling sidewalks for a buck a pop.  We would have charged more for driveways, but there were no such things in my neighborhood, just alleys covered with soot from the ubiquitous trash fires.  My eyes still glaze over in nostalgia whenever I smell garbage burning.

On a good snow day, you could end up with ten or fifteen bucks in your pocket by noon, a small fortune for a ten or twelve year old kid in the 1950s, and still have time to spend the rest of the day sledding down a steep hill into traffic.  I never made that much; I felt rich as soon as I hit five bucks, and went about finding ways to spend it.  But that was me.  I also collected coins in specially made books with slots for each year back to the Upper Paleolithic, but I never filled one.  I spent that, too, as soon as enough money to buy something accumulated.

We’d also have fun “skitching” rides on the perennially unplowed streets.  That involved sneaking low behind a car at an intersection, grabbing the bumper, and getting pulled along, sliding on the packed snow.  Even getting caught was fun.  We’d pelt the furious driver with snowballs and run away.

There was one time, though, that a cop caught us putting snowballs into a mailbox.  He informed us solemnly that he was letting us go, but that tampering with the mail was a federal crime, and he couldn’t vouch for what the FBI might want to do.

I had nightmares about J. Edgar Hoover for a week after that.

A seam in the multiverse

Strange things happen at my house. Mostly computer stuff: the sound on my desktop refuses to mute when I ask — no, demand — it; printers mysteriously chat with each other in the dead of night and print out seemingly — only seemingly — incomprehensible reports on their meetings; my ebook, charged to within a nanometer of its battery’s capacity, is dead in the morning despite having been turned off, then charges up perfectly and is fine. It’s possible the ebook is an invited non-voting observer in the printer meetings, but it doesn’t seem to attend them all.

Well, ok, I thought, maybe Julian Assange is using my stuff to communicate with Putin, or something. There are oddly slow periods on the internet, and recently my router went on strike and I had to bring in a scab, which is working fine, but some of my other electronics are behaving strangely since the switch. I am willing to admit I can’t fully control my cyber-paramours. But this morning, the insurrection spread to something not even attached to the internet: my coffeepot.

My habit is to freshly grind some coffee at night before I go to bed, and get everything ready so that when I wake, all I have to do is poke a button, and Bob’s your uncle. Don’t laugh, I actually have an Uncle Bob, although he died at the age of five back in nineteen ought something or other. Anyway, this morning I smugly poked the button, ate my breakfast, and went to pour myself a delicious cuppa.

All I got was hot water.

Damn, I thought, I forgot to put in the coffee! It’s happened before, though rarely. So I opened the top, and, what the hell, there sat the filter, and in it was the proper amount of ground coffee, dry, as they say, as a bone. This is where String Theory, multiverses, and what-not come in. The design of the coffeepot is such that the heated water literally has nowhere else to go but through the coffee and into the pot, unless it clogs completely, in which case it would erupt all over the counter. Which it did not do.

You may have read a piece I posted recently about Shakespearean monkeys, in which I pointed out that, according to the theory of probability, there was no reason they couldn’t crank out, say, Henry V the minute they sat down rather than eons later. Similarly, if we are but one universe in a bubbly lather of multiverse, and if these bubbles, each containing it’s own set of physical laws, are bound to encroach on each other eventually, why not now, and why not at my house?

On the other hand, is it possible I inadvertently put the carafe, still full of water, in its place without first pouring the water in the reservoir?

Nah!

Oh, Mr. Einstein, you’re such a kidder!

So, here’s the deal:  my cousin Bert, who lives on the planet Schnipplefarq, and I have devised an experiment.  We have carefully synchronized our watches to Cosmic Mean Time.  I will leave Earth at a prearranged time in my spaceship, which travels at exactly one half the speed of light, making a bee-line for Bert’s house, where he will wait with his notebook to write down the results.  In my spaceship, I will have two items: a red laser pointer, and a high tech bean shooter capable of shooting a bean, also at exactly one half the speed of light.  At a pre-determined time, I will simultaneously point the laser at Bert’s house and press the button, and launch a bean, also at his house.

Since the speed of light is constant, according to Mr. Einstein, and the speed of the bean is relative to the speed of my spaceship, they should arrive at the same time.  Bert will have long since given up, of course, forgetting that our carefully synchronized watches will be way off, since time for me and my watch will pass more slowly than for him and his.

What should happen is that my red pointer light will arrive on time, but magically blue.  Bert, by that time, having decided that I’m hopelessly forgetful, will have put away his notebook and gone back into the house for a quick shot and a nap.  So he won’t notice when the bean also arrives at the same time, having increased to infinite mass due to travelling at the speed of light.  Which is just as well, since Bert, his shot glass, his comfy chair, and his planet will be annihilated by the collision.

Now, you might think what I find bothersome about all this is that time slows down for me, or that a bean could acquire infinite mass just by going real, real fast, but no.  Oh, it’s true that while I’m zipping along relative to Bert, he’s also zipping along relative to me, and why wouldn’t our time distortions cancel out, or that infinite mass would by definition have to include everything else out there, but that’s not it. It’s the concept of speed.

See, we happen to live on a planet that is way, way larger than we are, which gives us the illusion that it’s stationary, so when we think of speed, it’s relative to the great blob of  stuff under our feet.  If we go six mph, we mean six miles of earth has passed beneath us during an hour.  But the earth itself is not standing still.  It’s rotating at about 1,036 mph, and orbiting the sun at about 67,000 mph.  As if that’s not enough, the sun is moving through the galaxy at about 447,400 mph, and the galaxy is moving … well, you get the point.  You are really moving many, many thousands of miles per hour.  Plus six.

All of this speed, of course is relative to something else, us to the earth, the earth to the sun, and so on.  This means that it could be said that when we are moving six mph, the earth is moving that same speed relative to us.  Put another way, two cars, each going 30 mph relative to the earth, might be going anywhere from 0-60 relative to each other.

So what is the speed of light relative to?  According to Mr. E, nothing!  Or rather, itself.

Okay, let’s see.  If I wanted to measure the speed of light, I could count the number of some units of it that pass by during some time interval, like counting power poles from a train to figure out how fast it’s going.  That might be waves, but that’s dependent on frequency, and you get tautological pretty quick doing that.  Or it could be particles, but counting photons is worse than trying to figure the number of water molecules passing in a stream.  You’re left with bursts of light.  So you do that and get a good number.  Then Cousin Bert (still alive for the nonce) does the same thing, with the same bursts, while zooming past you at cosmic speeds.  And gets the same number.

What?  I don’t even know what speed means in that context.

Don’t even ask what would happen if I got the velocity upgrade for the pea shooter.

The mountains and the sea, Part 2

Ah, GPS!  What would we do without it?  Those satellites tell us exactly where we are. That’s what they do, isn’t it?

Well, not exactly.  In fact, the only thing a GPS satellite does is tell you what time it is up there.  For that to tell you where you are, two things are required: two perfectly synchronized clocks, one in the satellite and one in the receiver, and a way to tell exactly how long the signal from above takes to get to you.  The clocks in the satellites are atomic clocks; they’re be accurate for many millennia.  The clocks here are quartz clocks, like your fancy wristwatch; they’re cheaper and you can easily reset them if they get off, something you can’t do to the satellite clocks.  The satellites just send out regularly timed strings of pseudo-random numbers.  The necessary calculations to figure out where we are all done down here.  The receivers generate the same, and then compare the signals to get the lag.  Since we know the speed of light, which is the same as radio waves, calculating the precise distance is easy peasy.

A little sidebar of interest: you know those equations Einstein came up with you thought were only good for bombs and nuclear reactors?  Without them, GPS wouldn’t work worth a damn.  You see, the satellites orbit at about 12,000 miles, far enough for them to be moving significantly faster that anything on the surface of the earth.  So fast, in fact, that time actually slows down for them relative to the earth.  If you don’t take that into account, you’ll end up thinking you’re in the middle of the ocean somewhere.

Cool.  There are enough satellites (27) so that you can get at least 3 or 4 from anywhere on the planet, and can thus pinpoint your location by trilateration.  But there are issues.  The military, which originally developed GPS, also wanted to know the elevations as well as horizontal location.

Remember sea level?  Our lumpy egg of a planet drove us to turn that into an abstract surface, where all points on it had the same gravitational potential.  An easy way to think of that is to think of a surface where an object weighs exactly the same, no matter where it is (yes, if you want to lose weight, just climb a mountain).  This surface is called the geoid, and is less lumpy than earth as a whole, but lumpy all the same.  GPS gives you the actual surface of the earth, but you have to adjust that to sea level to get a useful elevation.  Shouldn’t be a problem, right?

Wrong.  Since the geoid is irregular, there’s no easy way to model it for the computers to work with.  The best we could do was a smoothish egg, kinda-sorta where we thought sea level was, but often significantly different.  What to do?  It turns out that traditional ways of measuring elevation, with spirit levels, was very, very good at arriving at the geoid.

Years ago, I worked as a land surveyor when the military was just developing GPS.  The Defense Department sent out memos to surveyors everywhere, requesting us to set up our receivers at known elevation points every chance we got, and report the official elevation along with the what the GPS receiver thought the elevation was.  It wasn’t too long before an accurate model of the geoid was available.

Now you know what that little flat box does when you tell it to go to Grandma’s house, by the mountains or the sea.